
Odyssey 2 Technical Specs V1.1
By Daniel Boris 11/98

Disclaimer: All the information in the original document come from studying the actual
Odyssey 2 hardware. The only technical documentI had that the time was the Intel 8-bit
Embedded Controller Handbook. Starting with version 1.1, I had access to various
official O2 tech docs. I have made every attempt to assure the accuracy of this
information, but there are bound to be errors and omissions in this document. Use this
information at your own risk.

1.0 Processor
The Odyssey 2 (O2) is based on the Intel 8048 microcontroller. The 8048 is clocked

at approximately 1.79 MHz which is divided by 5 to produce a .36Mhz (2.5us) instruction
cycle clock. (Note: This is not as slow as it seems since each 8048 instruction takes only
1 or 2 cycles) The 8048 has 64 bytes of internal RAM, and 1K of internal ROM that
contains the system BIOS (see section 6.0). The 8048 has 2, 8-bit I/O ports, an internal
timer/counter, an interrupt input, and 2 single bit testable inputs.

1.1 I/O port 1
All the pins (P10-P17) on this port are used as outputs. The function of each pin

as follows:

P10: Cart bank switch 0
This pin is used to select between rom banks on 2 bank cartridges and is the low
bit for selecting banks in 4 bank cartridges.

P11: Cart bank switch 1
This pin is the high bit used for selecting banks in a 4 bank cartridge.

P12: Keyboard scan enable
Setting this pin to 0 enables the output of the keyboard scanner.

P13: Video Display Controller (VDC) enable
Setting this pin to 0 enables the video controller onto the bus.

P14: External RAM enable
Setting this pin to 0 enables the external ram onto the bus.

P15: Not connected

P16: Copy mode enable.
Setting this bit to 1 enables the RAM to VDC copy mode. To use this mode you must

also set P13 and P14 to 0. In this mode all external reads come from the external ram and
all external writes go to the VDC. This allows data to be copied from the RAM to the
VDC easily.

P17: Luminance enable.
I believe setting this bit to 1 enables the luminance output from the VDC to the video

mixer.

1.2 I/O port 2

The second I/O port is used to read the keyboard. Since P20-P23 are also used as the
upper 4 bits of the address bus, I believe that it is only possible to read the keyboard
correctly through the BIOS.

P20..P22(W): Select keyboard row to scan
The value written into these 3 bits will pull one of the keyboard rows low (see

Appendix A). Writing a value of 0 will also enable joystick 2 onto the data bus, and
writing a value of 1 will enable joystick 1 onto the data bus (see section 5.0).

P23: Unused.

P24(R): Key press indicator
A 0 on this input indicates that a key was pressed on the currently selected row.

P25..P27(R): Keyboard column read.
If R24=0 then these 3 bits will contain the column number of the key that was

pressed.

2.0 Cartridge

The O2 cartridge connector has 2 row of 15 contacts each. The contacts are on 0.15
inch centers. The cartridge port also serves as an expansion port, for example for the
Voice Module. The pins are labeled as follows:

Top Row: A B C D E F G H J K L M N P R
 --

Bottom Row: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(Note that letters I, O, and Q are not used as labels on the top row)

A: ~WR – Active low cart write enable, disabled when P16 is high.
B,C: GND
D: +5V
E: Active high external RAM enable
F: ~PSEN (Chip Enable to the cartridge)
G: A0
H: A1

J: A2
K: A3
L: A4
M: A5
P: A6
N: A7
R: A8

1: T0 from processor
2..9: DB0..DB7 from the processor
10: A10
11: P14
12: P11, High bank select bit
13: P10, Low bank select bit
14: A11
15: A9

A normal cartridge uses:
GND, +5: Power

DB0..DB7: Data Bus

~PSEN (Program Store Enable): This signal comes from the processor and goes low to
indicate a read from program memory. This is used to enable the cartridge.

A0...A9,A11: Address bus. Notice that A10 is not used by the cartridge. The reason for
this is that the internal ROM in the processor occupies address $0-$3FF. The first byte in
the cartridge is accessed at address $400 so leaving off A10 will map this address to the
first byte in the cartridge.

P10, P11: Bank select bits. For cartridges over 2K these lines are used to select banks. For
4K carts P10 is used to select between the 2 banks. For 8K carts P10 and P11 are used to
select between the 4 banks.

3.0 External RAM
Besides that RAM that is internal to the processor there are 128 bytes of RAM

external to the processor. To enable the external ram set P14 low and P13 high. The
memory can now be read and written to using the MOVX command.

4.0 VDC
The Video Display Controller (VDC) chip is a custom Intel IC that generates all the

O2’s video and audio. The VDC is accessed by setting P13 low and P14 high, then using
the MOVX instruction. The VDC occupies and address range from $00 - $FF. It is
important to note that the VDC registers that control the graphic object cannot be changed
while the VDC is enabled by the VDC control register.

4.1 Graphic Objects
The VDC can generate 4 different types of graphics ‘objects’, a background grid,

single characters, quad characters, and sprites. Under normal circumstances, these objects
should only be changed during the vertical blank period.

4.2 Background Grid
The background grid is a grid of boxes with 8 rows and 9 columns. Each segment of

each of the grid lines can be individually turned on or off. The VDC registers that control
the grid are at locations $C0-$C8, $D0-$D8, $E0-$E9:

$C0-$C8 Horizontal grid line (0=off/1=on)
Each location represents 1 of the first 8 horizontal lines in the grid. Each bit in each

location controls the corresponding column on each line, Bit 0 = column 0, Bit 1= column
1 and so on.

$D0 - $D8 Horizontal grid line 9 (0=off/1=on)
These locations work the same as $C0-$C9 but for horizontal line 9. Only bit 0 is

used in each location.

$E0-$E9 Vertical gird lines (0=off/1=on)
Each location represents 1 of the 10 vertical grid lines. Each bit in each location

controls the corresponding row on each line, Bit 0 = row 0, Bit 1 = row 1 and so on.

The color of the background and grid are controlled by the color register $A3 (see section
4.9).

If bit 7 of the VDC control register ($A0) is set to 1 then the box to the right of each
vertical line segment that is turned on will be filled solid with the grid color.

4.3 Sprites
The VDC can draw 4 independent sprites. Each sprite is 8x8 pixels in one color and

can be positioned freely anywhere on the screen. The sprite control registers are at $00 -
$0F and the sprite shape memory is at $80-$9F.

$00 - $03 Sprite 0 control
$04 - $07 Sprite 1 control
$08 - $0B Sprite 2 control
$0C - $0F Sprite 3 control

$80 - $87 Sprite 0 shape
$88 - $8F Sprite 1 shape
$90 - $97 Sprite 2 shape
$98 - $9F Sprite 3 shape

4.3.1 Sprite control registers
Byte 0 – Y position of sprite
Byte 1 – X position of sprite
Byte 2:

Bit 0: 1 = Shift sprite 1 pixel to the right
Bit 1: 1 = Shift even rows of sprite 1 pixel to the right
Bit 2: 0 = Normal sprite/1=Double size sprite
Bit 3..5: Sprite color
Bit 6..7: Unused

Byte 3: Unused

4.3.2 Sprite data
Each sprite has 8 bytes for the shape. Each byte represents one row of the sprite and

each bit controls one column of the sprite.

4.4 Single Characters
The VDC can generate up to 12 foreground characters from it’s internal character set

of 64 characters (see Appendix C). The memory area $10-$3F controls these characters
and each character requires 4 bytes so the first character is at $10-$13, character 2 is at
$14-$17, etc. Note that if any characters over lap each other, or overlap quad characters,
the resulting display will be unpredictable.

Byte 0: Y position to start displaying character at.

Byte 1: X position of character

Byte 2: Lower 8 bits of position in character set to begin getting character shape from.

Byte 3: Bit 0: 9th bit of character set pointer.
 Bit 1..3: Character color

NOTE: The interaction between Byte 0 and Byte 2 in determining how and where the
character is displayed is very confusing and hard to explain in words. The best way to
learn it is to write some code and play around with it.

4.5 Quad characters
Quad characters work in a very similar fashion to normal characters except that they

are displayed in groups of 4 characters at a time. The quad characters use the memory
range from $40-$7F, and there are 16 bytes for each quad character. In each quad
character object there are 4 bytes for each of the 4 characters and they have the same
functions as the 4 bytes in a normal character. The only difference is that the X position
and Y position of the last character sets the position of the whole set of 4 characters. Each
character is displayed one after the other with a one character wide space between each.
Just like normal characters, if any quad characters overlap each other, or overlaps normal
characters the results will be unpredictable.

4.6 VDC Control Register
Location $A0 is the VDC control register. The bits in this register have the following

functions:

Bit 0: Enable horizontal interrupt. Enables an interrupt at each horizontal blank.
Bit 1: 1 = Strobe X,Y beam location into $A4,$A5. 0 = $A4,$A5 follow beam.
Bit 2: Enable sound interrupt.
Bit 3: Grid control (0=Off/1=On)

This bit turns the background grid on or off. Grid cannot be changes when this is
set to 1.

Bit 4: Unused in the O2.
Bit 5: Foreground (0=Off/1=On)

This bit turns all foreground objects on or off. Characters and sprites cannot be
changed when this is set to 1.

Bit 6: Dot Grid (0=Off/1=On)
This bit turns a gird of dots on or off. These dots line up with the intersections of
the grid lines in the background grid.

Bit 7: Fill Mode (0=Off/1=On)
This bit turns the grid fill mode on or off. When this bit is on, the box to the
right of every vertical grid line that is turned on is filled with the background
color.

4.7 VDC Status register
Location $A1 is the VDC status register:

Bit 0: 1 = Horizontal scan active, 0 = HBLANK
Bit 1: Position Strobe Status. 1 = Follow Beam, 0 = Latched
Bit 2: Sound register empty
Bit 3: This bit is normally 0 and goes to 1 for 40us at the start of VBLANK
Bit 4..5: Unused
Bit 6: External Chip Overlay (not used on the O2)
Bit 7: Character overlap. This is set when 2 or more character objects are overlapping

4.8 Collision register
Location $A2 is the collision register. Each type of object on the screen has a

corresponding bit in the collision register:

Bit 0: Sprite 0
Bit 1: Sprite 1
Bit 2: Sprite 2
Bit 3: Sprite 3
Bit 4: Vertical grid
Bit 5: Horizontal grid and dots grid
Bit 6: External collision input, not used on O2.

Bit 7: Characters

To check for collisions with a given object(s) set the appropriate bits to 1. When you
read back this location any collision between objects will be indicated by a 1 in the
corresponding location. For example to check for collisions between sprite 0 and other
objects, set $A0 to $01, then when you read back $A0 it will return a 1 for each object
sprite 0 collided with. This register is only valid during VBLANK.

4.9 Color register
Register $A3 is the register that controls the background and grid color. The bits

have the following functions:

Bit 0..2: Grid color
Bit 3..5: Background color
Bit 6: Grid luminance (0=dim/1=bright)
Bit 7: Unused

4.10 Sound
The sound is controlled by registers $A7 to $AA. The sound system consists of a 24

bit shift register that is clocked out at one of two frequencies to form the output audio
signal.

$A7-$A9 – 24 bit shift register
$AA – Sound control register

Bit 0-3: Sound volume
Bit 4 : Enable noise generation.
Bit 5 : Shift frequency, 0 = 983Hz, 1 = 3933Hz.
Bit 6 : Recirculation bit. 0 = Shift register is played once and sound stops, 1 = Shift
register is constantly looped.
Bit 7 : Sound enable. 0 = sound off, 1 = sound on

4.11 Video timing (approximate timings)

Video frame = 16.6ms = 262 scanlines = 6026 machine cycles
VBLANK = 1.4ms = 22 scanlines = 506 machine cycles

 Display area = 15.2ms = 240 scanlines
Scanline = 63.4us (including HBLANK) = 23 machine cycles
HBLANK = 12us

4.12 (Removed, see section 4.14)

4.13 Line Interrupts

In normal operation video registers should only be changed during the vertical blank
period. Video registers can be changed during the screen drawing with some restrictions
to create desirable effects. To synchronize these changes you can use line interrupts.

The 8048 processor has an internal counter that is clocked from the horizontal sync
signal from the VDC. At the end of each horizontal blank period the internal counter is
incremented, when the counter rolls over from $FF to $00 a counter interrupt is
generated.

Some cartridges do mid screen changes without using line interrupts. To do this they
use the scanline counter ($A4) to determine when to make changes.

4.14 X,Y Regisers
$A5 and $A4 are the X and Y registers respectively. These registers contain the

current X and Y position of the electron beam as it drawing the screen. When register
$A0 bit 1 is set to 1 these positions will be latched in and held in these registers.

5.0 Joysticks
To read the joysticks you must first disable both the VDC and the external RAM by

setting P13 and P14 high. You then enable the keyboard scanner by setting P12 low. To
read the right joystick set P20...P22 to 0 and to read the left joystick set P20, P21 to 0 and
P22 to 1. Once this is setup the stick can be read using the INS A,BUS command. The
bits read are as follows:

Bit 0: Up
Bit 1: Right
Bit 2: Down
Bit 3: Left
Bit 4: Fire button

NOTE: Since the joystick is enabled onto the data bus it is only possible to read the sticks
from the BIOS ROM.

6.0 BIOS
The O2 has a 1K BIOS ROM that is stored inside the 8048 processor. The BIOS

takes locations $0-$3FF in the program area.

6.1 Cartridge Vectors:
The BIOS ROM makes calls to various addresses in the cartridge:

$400 – The BIOS jumps to this address when the systems is powered up or reset.
$402 – Jumped to on an external IRQ.
$404 – Jumped to on a timer IRQ.
$406 – Vblank service routine
$408 – The BIOS jumps to this location after the “Select Game” routine has executed.
$40A – Continuation of Vblank

6.2 BIOS Routines: (This section is far from complete)
Alters: Indicates any registers that are altered by the routine and not restored
Ends: Ending address of routine
Inputs: Indicates any values that should be passed to the routine
Returns: Indicates any values that the routine returns

$E7: Enable VDC
Alters: P1
Ends: $EB

$EC: Enable external RAM
Alters: P1
Ends: $F0

$11C: Turn display off
Alters: R0,A

$127: Turn display on
Alters: R0,A

$2C3: Select Game routine. (This is where most cartridges start)

$38F: Read Joystick
Input: R1: 0 = Read stick 0, 1 = Read stick 1
Returns: R3 = $FF Stick pushed up

R3 = $01 Stick pushed down
R2 = $FF Stick pushed left
R2 = $01 Stick pushed right
F0 = 1 Button pushed

Alters: A, P2, R0, R2, R3, F0

7.0 The Voice
The Voice is an expansion module that plugs into the O2’s cartridge port and give it voice
synthesis capabilities. The voice uses an SP0256B speech processor chip with built in
speech ROMs. The speech ROM can be expanded via the cartridge connector so that carts
can contain extended voice data.

7.1 Addressing The Voice
The Voice appears in memory just about the external RAM. It is accessed the same way
that the external RAM is accessed (see section 3.0). Any external writes to address $80-
$FF will go to The Voice. Setting bit 5 to 0 when writing to the address range will hold
the SP0256 is reset. Setting bit 5 to 1 will release the reset. Reset will stop any sound that
is currently playing and will reset the voice bank select back to bank 0.

7.2 Voice Banks
The various sounds that the SP0256 can play are store in a series of different banks. The
first bank is contained inside the SP0256 chip and is selected by writing to address $E4.
There are 3 additional banks of sound on an external ROM board within The Voice.
These banks are selected byte writing to $E8, $E9, and $EA. Writing to addresses $EB-
$EF will select external sound banks that are contained on some cartridges. Once a bank
is selected it stay selected until another bank is selected, or until the SP0256 is rest.

7.3 Triggering sounds
Writing a 1 to any address from $80-$DF, $F0-$FF will trigger the SP0256 to play a
sound from the current bank. Note, not all banks will contain sounds at all locations. See
Appendix E for a list of sounds. Once a sound is triggered it will play until it is
completed, or until the SP0256 is reset.

7.4 Voice Status
The T0 input to the processor comes from the LRQ pin on the SP0256. Whenever LRQ is
1 the input buffer to the SP0256 is full and no more sounds commands can be issued.
When LRQ goes low the input buffer is free to be loaded. Note that this does not indicate
that a sound has finished playing, it just indicates that the chip is read to receive another
command. New commands will not execute until previous ones have finished executing.

Appendix A: Keyboard map

READ
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 8 9 SPC ? L P

2 + W E R T U I O

3 Q S D F G H J K

4 A Z X C V B M .

5 - * / = Y(YES) N(NO) CLR ENT

The reset button is hardwired to reset on the processor and cannot be
read like the other keys.

Appendix B: Colors

Character/Sprite Colors Dark Back/Grid Colors Light Back/Grid Colors
0 Dark Grey Black Black
1 Red Dark Blue Blue
2 Green Dark Green Green
3 Orange Light Green Light Green
4 Blue Red Red
5 Violet Violet Violet
6 Light Grey Orange Orange
7 White Light Grey Light Grey

Appendix C: Character Set

Character Character Character Character
0 0 16 + 32 A 48 10
1 1 17 W 33 Z 49 “ball”
2 2 18 E 34 X 50 “man right”
3 3 19 R 35 C 51 “man right walk”
4 4 20 T 36 V 52 “man left walk”
5 5 21 U 37 B 53 “man left”
6 6 22 I 38 M 54 “arrow right”
7 7 23 O 39 . 55 “tree”
8 8 24 Q 40 - 56 “slope left”
9 9 25 S 41 x 57 “slope right”
10 : 26 D 42 “divide sign” 58 “man forward”
11 $ 27 F 43 = 59 \
12 28 G 44 Y 60 “ship 1”
13 ? 29 H 45 N 61 “plane”
14 L 30 J 46 / 62 “ship 2”
15 P 31 K 47 “block” 63 “ship 3”

Appendix D: VDC memory map

$00 - $03 Sprite 0
$04 - $07 Sprite 1
$08 - $0B Sprite 2
$0C - $0F Sprite 3

Byte 0
Y position

Byte 1
X position

Byte 2
7 6 5 4 3 2 1 0

Color Size Even
Shift

Full
Shift

$10 - $3F Foreground Characters (12 characters/4 bytes per character)

Byte 0
Y position to start displaying character

Byte 1
X position

Byte 2
Character set pointer (0..7)

Byte 3
7 6 5 4 3 2 1 0

Color Cset pointer (8)

$40 - $7F Quad Characters (4 groups/16 bytes per group)

$80 - $87 Sprite 0 shape
$88 - $8F Sprite 1 shape
$90 - $97 Sprite 2 shape
$98 - $9F Sprite 3 shape

$A0 VDC control register

7 6 5 4 3 2 1 0
Fill

Mode
Dot
Grid

Display
Enable

Enable Ext.
Overlap

Grid
on/off

Sound
Interrupt
Enable

Latch Pos
Registers

Horz
Interrupt

Enble

$A1 VDC Status

7 6 5 4 3 2 1 0
Major
System
Overlap

External
Overlap

VBLANK Sound
Needs
Service

Position
Strobe
Status

HBLANK

$A2 Collision (W = enable/R = detect)

7 6 5 4 3 2 1 0
Characters Grid Sprite 3 Sprite 2 Sprite 1 Sprite 0

$A3 Color register

7 6 5 4 3 2 1 0
Grid Lum Background Color Grid Color

Appendix E: Voice sounds

Bank: $E4

˝
80 10MS PAUSE
˝
81 30MS PAUSE
˝
82 50MS PAUSE
˝
83 100MS PAUSE
˝
84 200MS PAUSE
˝
85 b[OY]
˝
86 sk[Y]
˝
87 [E]nd
˝
88 [C]OMB
˝
89 [P]ow
˝

8A dod[GE]
˝
8B thi[N]
˝
8C S[i]T
8D [T]o
8E [R]ural
8F s[U]cceed
90 [M]ilk
91 par[T]
92 [TH]ey
93 s[EE]
94 b[EI]ge
95 coul[D]
96 t[OO]
97 [AU]ght
98 h[O]t
99 [Y]es
9A h[A]t
9B [H]e
9C [B]usiness (Short)
9D [TH]in
9E b[OO]k

9F f[OO]d
A0 [OU]t
A1 [D]o
A2 wi[G]
A3 [V]est

A4 [G]ot
A5 [SH]ip
A6 a[Z]ure
A7 b[R]ain

A8 [F]ood
˝
A9 s[K]y
˝
AA [C]an't
˝
AB [Z]oo
˝
AC a[NG]chor (anchor)
˝
AD [L]ake
˝
AE [W]ool
˝
AF [R]epair
˝
B0 [WH]ig
˝
B1 [Y]es
˝
B2 [CH]urch
˝
B3 f[IR] (Short)
˝
B4 f[IR] (Long)
˝

B5 b[EAU]
˝
B6 [TH]ey
˝
B7 ve[S]t
B8 [N]o
B9 [H]oe
BA st[ORE]
BB al[AR]m
BC cl[EAR]
BD [G]uest
BE sadd[EL] (saddle)
BF [B]usiness (Long)
C0 "ENEMY"
C1 "ALL CLEAR"
C2 "PLEASE"
C3 "GET OFF"
C4 "OPEN FIRE"
C5 "WATCH OUT"
C6 "MERCY"
C7 "HIT IT"
C8 "YOU BLEW IT"
C9 "DO IT AGAIN"
CA "INCREDIBLE"
FA "U.F.O."
FB "MONSTER!"

˝

Bank: $E8

˝
80 "AMAZING"
˝
81 "THANK YOU"
˝
82 "YUCK"
˝
83 "ARG"
˝
84 "THAT'S EASY"
˝
85 "ATTENTION"
˝
86 "DANGER"
˝
87 "TURKEY"
˝
88 "ACTION"
˝

89 "AAAAH"
˝
8A "GOOD"
˝
8B "HI"
˝
8C "HARD"
˝
8D "RIGHT"
˝
8E "WRONG"
8F "ATTACK!"
90 "GREAT!"
91 "CLIMB"
92 "DIVE"
93 "FIRE"
94 "HELP"
95 "HURRY"

Bank: $E9

80 "JUMP"
˝

81 "RUN"
˝

82 "SQUASH!"
˝
83 "NOW"
˝
84 "NO"
˝
85 "NO!"
˝
86 "YES"
˝
87 "SORRY"
˝
88 "OH DEAR"
˝
89 "GOT'CHA"
˝

8A "OUTCH"
˝
8B "OH NO"
˝
8C "GO FOR IT"
˝
8D "DO IT"
8E "LOOK OUT"
8F "COME ON!"
90 WHIP SOUND
91 TONE E991
92 MEDIUM EXPLOSION
93 BEE SOUND
94 SMALL EXPLOSION E994
95 SMALL EXPLOSION E995
96 SMALL EXPLOSION E996

Bank $EA
˝

80 "UP"
˝
81 "DOWN"
˝
82 "ALAS"
˝
83 "GO"
˝
84 "FIGHT"
˝
85 "DODGE"

86 PYEW-THUMP
87 PYEW-PYEW
88 MISSILE
89 LARGE EXPLOSION
8A "HA HA HA HA HA"
8B BRRRREEP
8C GUNSHOT
8D TONE EA8D
8E TONE EA8E
8F RANDOM COMPUTER
90-A7 TONES EA90-EAA7

Appendix F: Change Log

V1.0 – Initial Release
V1.1 –

Disclaimer - updated
Section 1.0 – Corrected processor timing
Section 2.0 – Correct WR signal description
Section 3.0 – Changed external RAM size to 128 bytes
Section 4.6 – Corrected control register bits
Section 4.7 – Corrected status bits functions
Section 4.8 – Corrected collision register
Added Section 4.10 – sound
Section 4.12 - Removed
Section 4.14 – Altered to reflect the true function of register $A5
Section 6.1 – Added remaining cart vectors
Appendix D – Fix register functions
Appendix E - Added

���
�����������������������

	Ends: $F0
	F0 = 1 Button pushed
	Appendix A: Keyboard map
	Dark Grey
	Appendix E: Voice sounds
	Appendix F: Change Log

	V1.0 – Initial Release

